	20	PEB4	04P		RESERVOIR ENGINEERING SOFTWARE					
Teaching Scheme					Examination Scheme					
					Theory			Practical		
L	T	P	C	Hours/Week	MS	ES	IA	LW	LE/Viva	Total Marks
0	0	4	2	4				50	50	100

COURSE OBJECTIVES

- > To provide an overview of Professional/Industrial software tools used in the Reservoir Engineering Domain
- > To provide the significance of Reservoir modelling and simulations for various Reservoir engineering problems

LIST OF EXPERIMENTS

- **Experiment 1:** Seismic Data Loading, Visualization and Processing using Kingdom suite/tNavigator.
- **Experiment 2:** Petrophysical Investigations using Well Log Analysis.
- **Experiment 3:** Development and validation of Geo-cellular Modelling using Geostatic prediction and Variogram Modelling.
- Experiment 4: Fluid Property (PVT) Modelling for Black Oil or Compositional Oil Simulations.
- **Experiment 5:** Introduction to Reservoir Simulation Modelling Workflows.
- **Experiment 6:** Simulation of SPE Comparative Solution-Model 1 (SPE-9723-PA)
- **Experiment 7:** Assisted History Matching using an Optimization Algorithm.
- **Experiment 8:** Simulation of Enhanced Oil recovery Process
- **Experiment 9:** Well Testing Studies using Kappa Engineering
- **Experiment 10:** Fracture design, analysis and optimization using FracPRO.
- **Experiment 11:** Hydraulic Fracture Treatment Design by using FracPro.

COURSE OUTCOMES

- CO1: Demonstrate the role of Reservoir simulation software in the upstream Petroleum industry.
- CO2: Classify the various software tools available in the Reservoir domain for history matching, performance and Risk analysis
- CO3: Create a Static and Dynamic reservoir simulation model using simulation software's.
- CO4: Excel the fundamental modelling workflows associated with the simulation software.
- CO5: Comprehend complex and dynamic nature of the Reservoir engineering problems including Pressure transient analysis, hydrofracturing etc. and formulate a solution strategy for effective management at the field scale.
- CO6: Identify the best tool matching the type and scope of the numerical study deployed to perform in the future.

TEXT / REFERENCE BOOKS

1. Software Manuals

END SEMESTER EXAMINATION OUESTION PAPER PATTERN

Max. Marks: 100

PART A: Evaluation Based on the class performance and Laboratory book

PART B: Viva Examination based conducted experiments

Exam Duration: 3 Hrs

50 Marks

50 Marks